High-throughput screen for small molecules that modulate the ATPase activity of the molecular chaperone DnaK.

نویسندگان

  • Lyra Chang
  • Eric B Bertelsen
  • Susanne Wisén
  • Erik M Larsen
  • Erik R P Zuiderweg
  • Jason E Gestwicki
چکیده

DnaK is a molecular chaperone of Escherichia coli that belongs to a family of conserved 70-kDa heat shock proteins. The Hsp70 chaperones are well known for their crucial roles in regulating protein homeostasis, preventing protein aggregation, and directing subcellular traffic. Given the complexity of functions, a chemical method for controlling the activities of these chaperones might provide a useful experimental tool. However, there are only a handful of Hsp70-binding molecules known. To build this area, we developed a robust, colorimetric, high-throughput screening (HTS) method in 96-well plates that reports on the ATPase activity of DnaK. Using this approach, we screened a 204-member focused library of molecules that share a dihydropyrimidine core common to known Hsp70-binding leads and uncovered seven new inhibitors. Intriguingly, the candidates do not appear to bind the hydrophobic groove that normally interacts with peptide substrates. In sum, we have developed a reliable HTS method that will likely accelerate discovery of small molecules that modulate DnaK/Hsp70 function. Moreover, because this family of chaperones has been linked to numerous diseases, this platform might be used to generate new therapeutic leads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Role of Molecular Interactions and Oligomerization in Chaperone Activity of Recombinant Acr from Mycobacterium tuberculosis

Background: The chaperone activity of Mycobacterium tuberculosis Acr is an important function that helps to prevent misfolding of protein substrates inside the host, especially in conditions of hypoxia. Objectives: The aim of this study was to establish the correlation of structure and function of recombinant Acr proteins both before and after ge...

متن کامل

Stability of Recombinant Proteins in Escherichia coli: The Effect of Co-Expression of Five Different Chaperone Sets

Chaperones are produced by prokaryotic, yeast and higher eukaryotic cells for various purposes. Over-expression of each chaperone or sets of them affect the production level of a recombinant protein in the cell. On the basis of this hypothesis, five different plasmids with 5 different combinations of 6 chaperones molecule, transformed into Escherichia coli along with human basic Fibroblast Grow...

متن کامل

Mutations in the substrate binding domain of the Escherichia coli 70 kDa molecular chaperone, DnaK, which alter substrate affinity or interdomain coupling.

In Escherichia coli, DnaK is essential for the replication of bacteriophage lambda DNA; this in vivo activity provides the basis of a screen for mutations affecting DnaK function. Mn PCR was used to introduce mutations into residues 405-468 of the C-terminal polypeptide-binding domain of DnaK. These mutant proteins were screened for the ability to propagate bacteriophage lambda in the backgroun...

متن کامل

The antibacterial peptide pyrrhocoricin inhibits the ATPase actions of DnaK and prevents chaperone-assisted protein folding.

Recently, we documented that the short, proline-rich antibacterial peptides pyrrhocoricin, drosocin, and apidaecin interact with the bacterial heat shock protein DnaK, and peptide binding to DnaK can be correlated with antimicrobial activity. In the current report we studied the mechanism of action of these peptides and their binding sites to Escherichia coli DnaK. Biologically active pyrrhocor...

متن کامل

Structural basis of the interspecies interaction between the chaperone DnaK(Hsp70) and the co-chaperone GrpE of archaea and bacteria.

Hsp70s are chaperone proteins that are conserved in evolution and present in all prokaryotic and eukaryotic organisms. In the archaea, which form a distinct kingdom, the Hsp70 chaperones have been found in some species only, including Methanosarcina mazei. Both the bacterial and archaeal Hsp70(DnaK) chaperones cooperate with a GrpE co-chaperone which stimulates the ATPase activity of the DnaK p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical biochemistry

دوره 372 2  شماره 

صفحات  -

تاریخ انتشار 2008